Penyederhanaan Fungsi Boolean

Terdapat tiga cara dalam penyederhanaan fungsi Boolean/ Yang pertama adalah dengan cara Aljabar Boolean, Cara ini mempunyai sifat yaitu, Bersifat trial and error (tidak ada pegangan), Penyederhanaannya menggunakan aksioma-aksioma dan teorema-teorema yang ada pada aljabar Boolean, Kita masih akan membahas cara ini, Kemudian cara kedua yaitu dengan menggunakan Peta Karnaugh, Cara ini mengacu pada diagram Venn, dan menggunakan bentuk-bentuk peta Karnaugh, Dan cara ketiga yaitu menggunakan Metoda Quine-McCluskey, Penyederhanaan dengan cara ini didasarkan pada hukum distribusi, serta menggunakan prinsip Eliminasi Prime Implicant Redundant

Contoh berikutnya kita masih mencoba menyederhanakan Fungsi Boolean dengan cara Aljabar Boolean, Diketahui fungsi Boolean f(x,y) = x’y + xy’ + xy, Karena bentuknya sudah SOP, maka kita tidak perlu meng-invers-kannya, dari fungsi boolean tersebut kita gunakan hukum Distributif, maka akan menjadi f(x,y) = x’y + x . (y’+y), Selanjutnya kita gunakan hukum Komplemen, maka akan menjadi f(x,y) = x’y + x . 1, Kemudian kita gunakan hukum Identitas, maka akan menjadi f(x,y) =  x’y + x, Selanjutnya kita gunakan Hukum Distributif, maka akan menjadi f(x,y) = (x’+x)(x+y), Kemudian kita gunakan lagi hokum Komplemen, maka akan menjadi f(x,y) = 1 . (x+y), Nah…langkah terakhir yaitu kita gunakan hukum Identitas lagi, maka akan menjadi f(x,y) = x + y

Yang perlu dipahami dengan cara Aljabar Boolean ini adalah, Pada saat melihat fungsi Boolean, Kita harus melihat apakah fungsi boolean tersebut bentuknya SOP atau POS, Jika SOP dan soal yang diminta konversi ke bentuk SOP maka kita tidak harus melakukan invers terhadap fungsi boolean tersebut, Namun jika soal yang diminta konversi ke bentuk POS, maka kita harus melakukan invers terhadap fungsi boolean tersebut, Begitupun sebaliknya, Jika fungsi boolean bentuknya POS.

Bagikan Melalui :

Post Author: CoedotzMagic

Seorang Berandalan Jenius yang bercita-cita menjadi penulis dan membuat terkesan cewek yang ia sukai.